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ABSTRACT
5G enables diverse services through network slicing, allow-
ing multiple virtual networks to share physical infrastruc-
ture. However, efficiently managing resources across slices
is challenging. This demo presents SliceGuard, a two-level
scheduling system that leverages WebAssembly (Wasm) to
allow slice owners to run customized schedulers in a se-
cure, platform-independent environment, while the network
operator manages inter-slice resource allocation. We demon-
strate dynamic slicing for cloud gaming over 5G and show
how Wasm enables real-time scheduler updates and fault
isolation. This approach enhances flexibility, security, and
customization for private 5G networks.
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1 INTRODUCTION
In the context of cellular communications, 5G introduced
the support for diverse services, such as massive machine-
type communications (mMTC), ultra-reliable low-latency
communications (URLLC), and enhanced mobile broadband
(eMBB) [7, 11]. To support these services, 5G introduced
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the concept of network slicing [1, 5, 10], which allows the
creation of multiple virtual networks (slices) on top of a
shared physical infrastructure. Each slice is tailored to meet
specific service needs, e.g., mMTC slices can prioritize low
power consumption [3], while URLLC slices optimize for low
latency [9]. Resource isolation and scheduling for each slice
is complex due to varying latency, throughput, and reliability
demands.

Slice owners may differ from the network operator, e.g., an
MVNO may want to adjust resource allocation to differenti-
ate services or perform updates on the fly. Running the slice
scheduler on the network operator’s stack introduces chal-
lenges around trust, recompilation, and hardware support.
To address this, we propose using WebAssembly (Wasm).

Wasm is a hardware- and OS-agnostic instruction format
designed as a portable compilation target for high-level lan-
guages like C, C++, and Rust [6]. It offers portability and
efficiency with features like binary encoding, linear memory,
AOT compilation, and direct hardware access [2]. Wasm en-
forces strict memory safety through bounds checking and
prevents control flow tampering. Wasm plugins run in sand-
boxed environments, ensuring that untrusted code does not
affect the host system, making it secure [4].

We propose running the slice scheduler as aWasmmodule
on the network operators’ infrastructure. This allows slice
owners to customize resource allocation without full trust,
and lets operators run the same code across its infrastructure.
In this demo, we present SliceGuard, a two-level Wasm-

based scheduler designed to meet the diverse requirements
of network slices. The system dynamically ensures each
slice’s SLAs while optimizing overall throughput. Running
the schedulers as Wasm modules allows on-the-fly updates
and fault isolation, ensuring seamless network operations
even during changes. Additionally, we show how the Wasm-
based scheduler can be dynamically loaded and updated
without downtime, ensuring safe execution regardless of
trust or code integrity.

2 SYSTEM’S OVERVIEW
To support the diverse requirements of 5G services, we de-
signed aWasm-based scheduler system that isolates network
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Figure 1: Two-level scheduler system.
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Figure 2: Outsourcing of intra-slice resource allocation to an ex-
ternal Wasm plugin

slices and guarantees the SLA of each slice. The system con-
sists of two-level of schedulers: a slice scheduler and a user
scheduler, see fig. 1. The first level, the inter-slice scheduler,
is responsible for dividing the resources among slices, while
the second level, the intra-slice scheduler, is responsible for
dividing the resources between users subscribed to the same
slice.

To perform the inter-slice resource allocation, we designed
a slicing algorithm that is able to dynamically assign re-
sources to three types of slices: Low Latency (LL) slices,
Guaranteed Bit Rate (GBR) slices, and Best Effort (BE) slices.
For LL slices, it timestamps packets when they are placed in
the queues, and reserves the Resource Blocks (RBs) needed
to avoid breaking the latency requirements. For GBR slices,
it keeps track of the slice’s average throughput via a moving
average window, and assigns it a priority level using a logis-
tic curve based on the distance from its target throughput.
For BE slices, it assigns them the remaining resources after
the LL and GBR slices have been allocated their resources. In
doing so, it is able to guarantee the SLA of each slice, while
maximizing the overall system throughput.
Moreover, to guarantee security between the network

operator and the slice tenants, to allow on-the-fly updates,
and to avoid recompilation of the code, our system runs
the intra-slice scheduler as a Wasm module, see fig. 2. In
this architecture, the network operator runs the inter-slice
scheduler, which decides the resources allocated to each slice.
This information is then passed to the Wasmmodules, which
run the intra-slice scheduler. This way, the slice tenants can
customize their resource allocation simply by loading a new

Figure 3: Hardware setup

bytecode in the Wasm sandbox. The network operator can
run the same code on all its infrastructure, without the need
to trust the slice tenants.

3 DEMONSTRATION
3.1 Goals of the demo
This demo aims to highlight the need for dynamic slicing
in 5G networks and demonstrate the capabilities of Wasm
in 5G setups. Specifically, we show how slicing enhances
application performances, enables real-time updates, and
isolates faults.

Slicing for cloud gaming over 5G. We demonstrate the
performance of two smartphones connected to our software-
based private 5G network. A local cloud gaming server ren-
ders frames and transmits them over the network to the users.
The demo compares a single-slice network with a multi-slice
setup and show how different slice types impact gaming
quality.
Wasm capabilities in 5G RAN. First, we show on-the-

fly change of the intra-slice scheduler’s code. Moreover, we
demonstrate howWasm isolates issues, such as segmentation
faults, preventing them from affecting other slices. For this,
we load a buggy scheduler for one of the slices and show
that only the phone in the buggy slice stops working, while
the other two phones continue functioning normally.
Another result which we demonstrated is the change of

user’s slices on-the-fly using the Wasm plugins.

3.2 Demo’s Setup
Our setup is depicted in fig. 3. We use open-source 5G RAN
stack [12] and core [8]. Wemodified the RAN code to support
slicing. The RAN and Core code are executed on a commodity
Intel NUC. For the radio transceiver, we use a USRP B210,
which is connected to the RAN machine. The cloud gaming
server runs on a laptop, which renders and sends the frames
to the RAN machine over a LAN to be further transmitted
over the air to the two tablets that we use for remote gaming.
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